Efficiency factors and radiation characteristics of spherical scatterers in an absorbing medium.

نویسندگان

  • Juan Yin
  • Laurent Pilon
چکیده

The radiative properties of bubbles or particles embedded in an absorbing medium are investigated. We aim first to determine the conditions under which absorption by the surrounding medium must be accounted for in the calculation of the efficiency factors by comparing results from Mie theory and the far-field and near-field approximations. Then, we relate these approximations for a single particle to the effective radiation characteristics required for solving the radiative transfer in an ensemble of scatterers embedded in an absorbing medium. The results indicate that the efficiency factors for a spherical particle can differ significantly from one model to another, in particular for large particle size parameter and matrix absorption index. Moreover, the effective scattering coefficient should be expressed based on the far-field approximation. Also, the choice of the absorption efficiency factor depends on the model used for estimating the effective absorption coefficient. However, for small void fractions, absorption by the matrix dominates, and models for the absorption coefficient and efficiency factor are unimportant. Finally, for bubbles in water, the conventional Mie theory can be used between 0.2 and 200 mum except at some wavelengths at which absorption by water must be accounted for.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Apparent optical properties of spherical particles in absorbing medium

An apparent absorption efficiency for spherical particles in absorbing medium is introduced to take into account the non-exponential absorption of the near-field scattered radiation in the absorbing medium. The apparent extinction, which is the summation of the apparent scattering efficiency following previous studies and the apparent absorption efficiency, is the same as the actual extinction....

متن کامل

Experimental Investigation of the Efficiency of a Semi-Spherical Solar piping Collector

Solar water heaters are good tools for saving fuel. The main component of these water heaters is collectors, which are responsible for absorbing solar energy and transferring it to the working fluid with the least heat dissipation. The present study is an experimental study of the performance of the solar semispherical collector with 1 m2 of absorber area at different volumetric flow...

متن کامل

Interaction of laminar natural convection and radiation in an inclined square cavity containing participating gases

Two-dimensional numerical study of flow and temperature fields for laminar natural convection and radiation in the inclined cavity is performed in the present work. The walls of the square cavity are assumed kept at constant temperatures. An absorbing, emitting, and scattering gray medium is enclosed by the opaque and diffusely emitting walls. The set of governing equations, including conservat...

متن کامل

Mie theory for light scattering by a spherical particle in an absorbing medium.

Analytic equations are developed for the single-scattering properties of a spherical particle embedded in an absorbing medium, which include absorption, scattering, extinction efficiencies, the scattering phase function, and the asymmetry factor. We derive absorption and scattering efficiencies by using the near field at the surface of the particle, which avoids difficulty in obtaining the exti...

متن کامل

Radiative transfer in a spherical, emitting, absorbing and anisotropically scattering medium

The atmospheres of planets (including Earth) and the outer layers of stars have often been treated in radiative transfer as plane-parallel media, instead of spherical shells, which can lead to inaccuracy, e.g. limb darkening. We give an exact solution of the radiative transfer specific intensity at all points and directions in a finite spherical medium having arbitrary radial spectral distribut...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Journal of the Optical Society of America. A, Optics, image science, and vision

دوره 23 11  شماره 

صفحات  -

تاریخ انتشار 2006